Automated Specification Centered Testing

Mats Heimdahl (PI)

Critical Systems Research Group (CriSys), University of Minnesota

Willem Visser (Co-PI)

Research Institute for Advanced Computer Science (RIACS) NASA Ames Research Center

Sanjai Rayadurgam (Research Assistant)

Mike Whalen (Today's Speaker)

Critical Systems Research Group (CriSys), University of Minnesota

Automated Specification-Centered Testing

Mats P.E. Heimdahl (University of Minnesota), Willem Visser (NASA Ames Research Center)

Goal: Develop a specification-centered testing framework to automatically generate test cases for critical systems

Key Innovation:

- Use model-checker as test-case generation engine
- Test generation techniques independent of the software artifact (requirements, design model, code)

Challenges:

- Identify a collection of test data coverage criteria for formal, state-based specifications
- Determine a suitable translation and abstraction from a formal specification to the input language of a model checker
- Obtain concrete test-cases from abstract models
- Augment specification-based tests with test cases generated from implementation to enhance coverage

NASA Relevance:

Increased quality and productivity of mission-critical software

Accomplishments to date:

- A framework for test-generation using model-checkers
- A set of criteria to drive test-case generation
- Domain abstraction techniques for software models
- Experiments on small models from avionics domain

Schedule:

- Investigate applicability to larger requirement models of flight control logic (Fall 2002)
- Java Pathfinder model-checker enhancements for testgeneration from code (Summer-Fall 2002)
- Approaches to instantiate test-cases with concrete data (Fall-Spring 2003)
- Minimizing test-suite size for a given set of criteria (Spring-Summer 2003)
- Evaluation and Wrap-up (Fall 2003)

Control Systems Workbench

Specification Centered Testing

Specification Centered Testing

Generating the Tests

Generating the Tests

Progress ...

- Past year ...
 - Formalism for generating test-cases from state-based specifications [ECBS 01/HASE 01]
 - ◆ Test criteria in terms of temporal logic [ECBS 01]
 - Framework for specification-centered testing [ICSE ATV 01]
 - ◆ Domain abstraction for software specifications [FSE 01]
- Ongoing ...
 - Case-studies to investigate
 - Coverage obtained on implementations by test-cases obtained from specification
 - Scalability of the approach to large models
 - Test cases from code using JPF

Some preliminary results

- A case-study on a small avionics model (ASW)
 - RSML^{-e} specification translated to NuSMV
 - Condition coverage criteria expressed in LTL
 - Generated 49 test cases (out of 78 properties)
 - Varying coverage of implementations in Java (produced by students)
 - Coverage metrics obtained using a Java coverage tool JCover*

^{*} Thanks to Man-Machine Systems for providing the tool free for our research project

Issues to be tackled...

- Two critical questions
 - Can we do this on large models?
 - Approach being evaluated on models of flight-control logic from Rockwell Collins
 - Can we do this on code?
 - JPF is being used currently to generate test-cases from code obtained by translating RSML^{-e} models
 - Results from first case-studies indicate a positive answer to both.
- Other issues of interest:
 - Instrumenting Nimbus to support coverage metrics
 - Instantiating test-cases with concrete data values
 - Environment specification for generating *realistic* test cases
 - Determining pass/fail status for test cases
 - Minimizing test suite size